
N95- 28772

EXAMPLES OF GRID GENERATION WITH IMPLICITLY SPECIFIED SURFACES

USING GridProZM/az3000 [1]: FILLETED MULTI-TUBE CONFIGURATIONS

Zheming Cheng and Peter R. Eiseman

Program Development Corporation

300 Hamilton Avenue, Suite 409

White Plains, NY 10601

SUMMARY

With examples, we illustrate how implicitly specified surfaces can be used for grid generation

with GridPro/az3000. The particular examples address two questions: (1) How do you model

intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes?

The implication is much more general. With the results in a forthcoming paper which develops

an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid

prototyping in grid generation.

INTRODUCTION

The theory for implicit surface formulations has its roots in algebraic geometry and asymp-

totics. The implicit form, as opposed to explicitly defined parametric surfaces, is given by a function

U of the embedding space variables: the Cartesian x, y, and z. The surface definition is then a level

surface of the function U(x, y, z). A level surface is just the set of points for which the specified

function is a constant. Level surfaces, for example are commonly used to graphically display the

contour lines of some variable. Since we are interested in only one level surface, there is no loss of

generality in forming U(x, y, z) in such a way that our desired surface appears when U(x, y, z) is 0.

This can always be made to happen for if the desired surface appeared with a value of U equal to

another constant C, then we would merely replace U by U - C. Geometric modeling with implicit

surfaces has been considered by [2].

As with contour lines in graphics, it is clear that the surface can have a richer topology. In

the case of intersecting tubes, which serves as an example to illustrate the use of implicit surfaces,

the topology is such that the surface has holes at the openings of each tube. Uiflike the parametric

constructions, this surface cannot be smoothly contracted to a point: it has non-trivial homotopy

and cohomology groups. The parametric constructions such as NURBS surfaces are not general

enough. They can only be applied in a local piecewise sense: not a global sense.

To explore fully the potential of implicitly specified surfaces in grid generation, there are

two important aspects need to be addressed: 1). How can a given implicit surface be used by a

grid generator. This is the topic of this paper. 2). How can a user setup implicit surfaces for

his/her particular application with ease. This aspect falls in the general area of what can be called

implicit surface modeling. This will be addressed in a forthcoming paper, where a well defined and

easy-to-follow procedure for general implicit surface modeling is developed.

Altogether, implicit surfaces represent a very useful and powerful facility to specify geometries.

801

In many situations, it is more advantageous than the explicitly (parametrically) defined surfaces.

Often, a simple function can represent a rather complex geometry as is the case shown in this

paper. It can be used to define generic shapes of surfaces. Therefore, a grid generator that accepts

implicit surfaces is very well suited to perform rapid prototyping in grid generation.

The general implicit surface definitions by level surfaces is one of the surface types that can

be directly taken by the grid generator, GridPro/az3000 [3, 4], for either global or local surface

specifications. In fact, for any grid generator to be considered really advanced must be able to deal

with implicit surfaces efficiently.

GridPro/az3000 is the multiblock grid generator with automatic zoning. Aside from surface

geometry, the prima,'y user i,:put is the pattern of grid lines or surfaces. This pattern is referred to

as the grid topology. The definition of grid topology is given by a topology input language (TIL).

This is also used to specify the number of grid points and clustering criteria. Once the TIL code is

in place, the grid is generated as a batch job in a manner which is steered by a dynamic schedule
file. The latter file allows the user a great deal of flexibility. For example, rather than just run

the case and write out the results, the user may desire to start with fewer grid points or lesser

clustering and then to gradually increase at latter steps in the evolution toward convergence. A
common motivation is for more efficiency when only modest computational resources are available

for the size of problem at hand.

Our discussion will start with the implicit geometry modeling for filleted intersecting tubes

and will continue with the development of TIL code for the generation of high quality (smooth

and nearly orthogonal) grids inside the multi-tube configurations. Examples will be given to show

the variety of configurations, the grid and surface quality, and the ease with which these items can

be created and presented for analysis. The multiplely branched tubes are frequently encountered

surfaces in geometry modeling and grid generation for a variety of different fields. As a natural

consequence, the mathematical formula for the surface model should be of considerable interest on

its own right.

MULT-TUBE GEOMETRY MODELING

The question of modeling the geometry of tube intersections has been addressed before in a

piecemeal fashion. The typical approach is to first find the intersection between the tubes. Once
the intersection is known, the next step is to move away from that curve of intersection to create

displaced curves on each tube at some reasonable distance from the intersection. This displacement

is most often formed moving a fixed distance along geodesic paths that emanate orthogonally from

the curve of intersection. With these displaced curves along each tube, the fillet is formed by a curve

of interpolation between them. Tiffs starts on one tube with the displaced position and available

geodesic tangent direction and ends on the other with the same conditions. When taken together,

a collar type surface is formed. The collar connects the tubes with first derivative continuity. This

process requires the solution of a surface surface intersection problem, the computation of geodesic

distances to produce the displaced curves, and the act of interpolation to construct the collar

surface. For this work, there are three surfaces required to define the intersection of two tubes in

a T-type configuration. The result is only first derivative continuous. For each application of this

technique, a collar is added. For example, with full tubes along the each coordinate axis, there

would be 12 surfaces (the tubes for x, y, z, -x, -y, and -z plus 6 collars). Moreover, should a

tube aspect ratio or squareness be added, then the associated problems of construction would be

more intensive.

802

Y Y

x

(a) Co) (c)

Figure 1: (a). The zero set of U = 1 - xy is shown. (b). The merge of all axial channels axe shown.

The curved walls axe given by either U = 1 - x2y 2 or the more general U = a + bx 2 + cy 2 - x2y 2.

(c). The coefficient b is blended from -1 along x < 0 to 1 along x > 0.

Unlike the traditional means for fillet creation, we offer a technique which does it all with one

infinitely differentiable surface. Moreover, each tube can be assigned a cross-sectional squareness

and aspect ratio.

Two dimensional models

Our examination of the geometry modeling process will start with two dimensions and will

lead by intuition. This should provide simplicity and clarity to the discussion of the implicit

methodology. In keeping with this objective, our first problem is to attempt to define the geometry

of four channels which follow the (x, y) coordinate axes and come together at the origin, ff we

examine the function y = 1Ix , then immediately we have two curves which asymptote to the axes.

As we go towards plus and minus infinity, it approaches the four semi-axes. Unfortunately, there

axe only two curves associated with this function. One is in the first quadrant while the second is

in the third quadrant. Thus, only one half of each channel can be bounded. In order to correct this

deficiency, we note that general shape is close to what we want, but that we need to also get the

same curves on the opposite side of each semi-axis. This can be readily accomplished by simply

taking the square of the equation that we started with. This means that both the original equation

y = 1Ix as well as the additional equation y = -1Ix axe satisfied when we use x 2 = 1/y 2. It is the

additional equation that inserts the previously missing Curve components for the second and fourth

quadrants. The result is symmetric as is the equation. These axe illustrated in Fig 1 (a) and (b).

The above equations between x and y can also be readily expressed in the form of U(x, y) = O.

In particnlax, the symmetric equation is defined with U(x, y) = 1 - x2y 2. Alternatives axe provided

by a multiplication with any strictly positive or negative quantity. Such multiplication's will not

change the 0 set of U(x, y). That is, the level curves at constant 0 as defined by U(x, y) = 0 will

be the same. With the current choice, the value along each axis will be unity. This will decay

as the axial regions axe departed. The decay will continue through the level curves that bound

the channels and be negative outside of them. Because of this continuous decay, the gradient of

U(x, y) will be pointing into the channels from each point on the channel wails. As we will see,

a requirement for the surface definition is that it be oriented in such a way that the wall normal

803

vectors point into the region to be gridded. Thus, this choice of sign, will at least, possess the

convenience of providing the gradients with the preferred orientation. To complete the definition of

the physical region, each channel must have an end. This is easily accomplished by specifying four

straight lines which successively cap off each channel with a perpendicular slice and with normals

that are oriented into the physical region. In level surface form, a straight fine with normal (a, b)

is given by U(x, y) = ax + by + c (Fig 1 (b)). Should a surface be given where the normal is not in

the correct direction, then a reversal of orientation can also apphed in the TIL code with the flag

" -- O" •

As one might wish to make the channels arbitrarily long with constant cross-section, a defi-

ciency immediately appears. That is because the channel width is decreasing at a rate inversely

proportional to the distance away from the origin. A partial solution to this problem is to insert

a parameter a into the level surface definition to arrive at U(x, y) = a - x2y 2. Then, at least,

the value of a can be chosen relative to the distance from the origin. Tiffs will assure that the

cross-section at the cap is not too close to 0. However, it will also mean that tile channels may be

too fat at closer distances. Thus, a more substantial correction is needed. For this purpose, the

fimction U is generalized to adinit a more desirable asymptotic behavior. It is given by

U(x,y) = a + b. x 2 + c. y2 - x 2.y2 (1)

Tile strategy, here, is to add pure quadratic terms in both x and y so that as either x or y becomes

large near an axis, one of the new terms will become significant to the same order of the last term in

the expression. Since each of the 4 chammls behaves in the same maimer, we need to examine only

one to see what is happening. Thus, we will focus our attention on the positive x-axis. Specifically,

if the position vector r = (z, y) is moved away from the origin but stays in the region near the

positive x-axis, then the olily significant term in U(x, y) is x2(b- y2). Thus, tile channel "radius" is

nearly y = v/b wtfich meaals that the channel cross-section is nearly twice that. In a more analytical

sense, we can rearrange the equation U(x, y) = 0 to cast it into the form

y2-b- a+c'Y2x2 (2)

Upon examination, the nmnerator on the right haald side is clearly bounded since the position

vector lies near the x axis which in turn implies that y cannot become arbitrarily large. However,

the denominator does become arbitrarily large as we go arbitrarily far along the positive x-axis.

As a consequence, the right hand side becomes progressively smaller as we travel along the positive

x-axis. With tiffs clear observation, we see that tile equation rapi(lly reduces to something like that

of setting the left hand side to 0. The error term (call it E) in tlfis process is then the right hand

side. It tells us how much deviation there is from our desired asylnptotic lines. Tile asymptotic lines

are at y = vfb and y = -v/b. As the channel bomldaries emerge from tile juncture near the origin,

they approach the asymptotic lines from tile outside. To insure that they stay on the outside, E

must be positive for the actual channel "radius" is y = v_ + E. Tiffs positivity condition then

becomes a condition on the parameters which is that a + bc must be positive. With vfb and

given as the radii of the channels along the respective x and y axes, the condition really becomes

a condition upon the choice of a (Fig 1 (b)).

At tiffs stage, we have successfldly constructed a level sltrface function for the 2D case of four

channels which smootldy come together at the origin. The next step is to see if it can be generalized

to a system of fewer channels. For this purpose, we consider the basic form of U(x, y) that was

already seen to be successful. Upon examination of tile last equation where the right hand side

was considered to be a positive error term E, the prior solution wold(t not exist if b were negative

804

rather than positive. With a constant negative value for b, the left hand side is strictly positive

and bounded away from 0 while the right hand side approaches 0 with larger values of x. This

means that the equation cannot be satisfied for large x. Thus, it must be bounded in x. In fact,

by solving for x as a function of y we get

• /a+cy 2

(3)

which iscertainly well defined when b isnegative. This function gives the contour on either side of

issymmetric about the x-axis and crosses itwith a value of IV/-_--_b. The asymptoticthe y-axis. It

the contour willbulge out a distance of _- v/C as itcrosses thelines are located at +v,7. Thus,

x-axis. If a = -be, then there is no bulge. This can also be seen by a direct substitution into the

above equation since it then reduces to x = :t=v/-C. The reslflt is that the chamml walls are exactly

the asymptotes.

As we have just witnessed, a negative value of the parameter b meaals that there is no tube

in the corresponding x-axis directions. Unfortlmately, it kills off the chammls on both the positive

and negative x-axis at once. This leaves the rather lminteresting case of a single straight channel.

To get to the next level of interest, we need to have a channel on one side but not the other.

We shall thus consider the case for a channel along the positive x-axis which fillets into a channel

along the entire y-axis. Tiffs will reqlfire b to be negative along the negative x-axis and positive

along the positive x-axis. It also means that b must depend upon x as opposed to its previous

role as a constant. Since it still represents the square of the channel radius, it must, at the very

least, approach a constaa_t value with increasing x. This will then assure us of a channel with

fixed cross-section. To achieve that fixed state within the physical region 1ruder consideration, it

is important to have the approach be sufficiently rapid. With these motivational facts, we need to

use an asymptotic blending hmction with a rate which can be controlled. An ideal candidate for

tiffs purpose is the hyperbolic tazlgent. To allow all possibilities, we shall write b in the form

b = p. f(x) + q. [1 - f(x)] (4)

where f(x) = [1 + tazfll(wx)]/2

The allowed con_tazlts _ long the respective positive and negative x-axis are respectively p and

q. To consider the case of interest, the value of q is negative while the value of p is positive. This

means that we will only have a channel of radius vfp along the positive x-axis. As the blending

function f(x) leaves the origin, it approaches 0 along the negative x-axis and 1 along the positive

x-axis. The rapidity with which it approaches each value is controlled by the damping factor w.

(see Fig 1 (c)). While the hyperbolic tangent construction is convenient, it is certainly possible to

consider alternatives which can serve the same purpose.

One attractive alternative is to consider a rational polynonfial. Since the level surface function

U(x, y) is a polynomial, tiffs would represent the most pure method since it would keep the entire

operation within the domain of polynomials. That is because a coefficient like b appears linearly

and thus so does f(x). As a consequence, a multiplication by the polynomial denominator of

the rational f(x) will produce a new overall equivalent U(x, y) that is entirely a polynomial. In

mathematical terms, this means that we remain within the context of what are called algebraic

varieties (a term from algebraic geometry).

With this motivation, we proceed. The conditions which must be met are that the blending

function go from a constant value of q along the negative x-axis to another constazlt value of p

805

alongthepositivex-azfis. Fo', this to happen asymptotically on either side of the origin, the highest

power of x in both the numerator and the denominator must match. The asymptotic value in this

process is then the ratio of the coefficients for these respective highest powers. This, however, is

just one number. But we actually need two different numbers if we wish to match two asymptotic

values. Thus, this technique fails.

The only hope to retrieve it is to allow a large growth in negative values as we migrate along

the axis in which there is to be no chamlel. For example, consider b to be the rational flmction

x3/(l+x3). This has a singularity (pole) at x = -1. Departing the pole in the positive direction, the

function increases from arbitrarily large negative values, passes through the origin, and continues

along the positive x-axis to approach the asymptotic value of 1 from below. Departing the pole in

the negative direction, the function decreases from arbitrarily large positive values and approaches

the same asymptotic value from above. Thus, we must use the function on only the positive side

of the pole. With the pole of b at -1, we shall consider a channel radius of 0.5 along the y-axis.

This will be a safe distance away. We can then expect to have the wall on the negative side of the

vertical channel to pass through the the x-axis (y = 0) somewhere between a value of the channel

asymptote (x = -0.5) aa_d the pole of b (at x = -1). That offset distance will be deternfined by

the choice of leading parameter a. To give a specific case, we will set a = 1. With this form, it is

then natural to view tile contour as a fmlction x of the variable y. This function is smooth and

synunetric about x = 0. Upon evaluation at y = 0, the level surface flmction reduces to a fifth order

equation in x which has aal approximate solution of x = -0.84. By separating out y, an evaluation

at the nearby x = -0.8 yields y = ±0.92. Thus we see the trend of going from the negative peak

at -0.84 at y = 0 and di'opping steadily to the asymptotic value of-0.5. Here, the offset distaalce

is 0.34. In slmtmary, we have witnessed that, while it is 1)ossible to use rational fimctions for the

blending, more care and cleverness is required in its execution and the overall format is nmch more

restrictive. In this paper, we will thus use the flexibility of transcrndental fimctions so that we

caat conveniently employ mlfltiple asymptotes in a singh' blending fimction. In particlflar, we shall

utilize the hyperbolic tangent.

Three dimensional models

Having established the basic properties in two dimensions, the extension into three dimensions

can be discussed with more brevity. To begin, the 2D level surface fimction U(x, y) = a - x2y e is

replaced by the 3D generalization [5]

U(x,y,z) = 1 - (x2y 2 + x2z 2 + g2z2) (5)

where now r = (x, y, z) and r = Irl = ,/z 2 + y2 ± z 2. Tlfis gives the parallel to the previous 2D

curves that decayed at the rate of 1/r as each axis was traversed to infinity. For the same reasons

the one can be replaced by a paranmter "a" to displace the effect of the decay. As before, this does

not remove the decay. The correction to pernfft constant cross-sections is the same as before. Tiffs

requires second order terms in each of x, y, and z to asymptotically select the appropriate parts of

the core quartic term. This gives us the basic function

U(r) = a + bx 2 + cy 2 + dz 2 - (x2y 2 + x2z 2 + y2z2) (6)

where a, b, c and d are constants.

With a simple analysis, we can show that for a > -nffn{bc, bd, cd}, b > 0, Eq. 6 defines a

surface of 6 tubes intersecting at origin. The separation in x is explicitly seen by consideration of

806

the reordered function

U(r) = x 2 . (b - y2 - z 2) + a + c . y2 + d . z 2 - y2 z2 (7)

As r departs the origin along the x-axis, the first term becomes more and more dominant over the

others. In the level surface equation U(r) = 0, a division by x 2 will give an equivalent equation

where all terms except the first will approach 0 as x grows in the outward vicinity of the x-axis. In

the limit, the equation is just the circular cylinder of radius v/b about the x-axis.

The axes of the 6 tubes lay on the +x, +y and +z axes respectively. Asymptotically, the cross

sections of the tubes are circles of radius V_, vfc and v_ for tubes along the +x, +y and +z axes

respectively. The asymptotical error in radius is,

a+b+c+d
AR < (8)

2r 2

The value of a determines the abruptness of the intersection. A larger a gives a lesser degree

of abruptness of the intersection.

The signs of b, c and d deternfine whether tubes in the corresponding directions will present.

If, say, b is negative, the tubes in the +x direction will disappear.

The analysis also shows that for the surface implicitly defined by U(r) = const, it is well

behaved near const = O.

The function can be generalized to enable the tube branchs to be switched on and off individ-

ually:

U(r) = a + Bx 2 + Cy 2 + Dz 2 - (x2y 2 + x2z 2 + y2z2) (9)

where B, C and D are flmctions of r. A set of choices are:

B = -1 + s x+ • (1 + tanh(4x)) + s_- • (1 - tanh(4x))

+. (1 + tanh(4y)) + s v • (1 - tanh(4y))C = -l+sv

D = -l+s z+ • (1 + tanh(4z)) + s_- • (1 - tmfll(4z))

(lO)

Here, a particular cheice of B, C and D is selected by setting six switch parameters to 0 or 1. Each

of the parameters controls one tube branch and a value of 1 (value of O) means there is (is not) a

tube in the corresponding direction.

s + =Oor 1 for tube along +x axis.

s + =Oor 1 for tube along +yaxis.

s + = Oor 1 for tube along +z axis.

s x = Oor 1 for tube along -x axis.

s_- = Oor 1 for tube along - y axis.

s z = Oor 1 for tube along - z axis.

(11)

The functional form can fllrther generalized to allow the cross section of the tubes to be superellipses

of different degrees. The further generalized fornnflas are listed in Appendix A.

GRID GENERATION WITH GridPro/az3000

Now we show how one ca_l generate grids for the region inside the branching tubes defined

above using GridPro/az3000.

807

The grid generation pro :ess with GridPro/az3000 starts with the design of a block topology

(domain decomposition into hexatmdras). Let's first consider the case where all 6 tube branches

axe present. The surface under consideration is

U(r)=2+x 2+y_+z 2-(x2y 2+x2z 2+y2z_).

Here, all 6 tube branches have the same radius, 1. We also decide that the grid will be generated

in the region -5<x <5,-5< y<5and-5< z<5.

In order to have the flexibility of changing configuration easily, we will blfild the block topology

in a component style. A component in GridPro/az3000 represents a subtopology or a portion

of the block topology that is conveniently grouped such that it can be reused in a similar fashion

as a subroutine can in, say, Fortran.

How a block topology should be designed and how the various components should be chosen

depend on many factors. One of our considerations here is to be able to change the configuration

to include a different number of tubes rather quickly.

At this step, we choose to use two top level components, a canter component for the center

intersection and a tube for a tube brmlch. Each of these two components is constructed by one

or more copies of the component, sac. The sac component, in turn, is constructed by properly

linking two loop4 components into a hyperquad.

These topology components are shown in Fig 2. Here, a solid dot is a block corner defined in

the component, a solid line is a block edge defined in the component, and a circle is an imported

corner into the component. On the corner and link level, the components sac and tuba look the

same. They differ maiuly in whether the outer quad defines a block face. It is a face for sac, and
it is not a face for tuba.

To run GridPro/az3000, the topology design or components must be programmed in the

Topology Input Language(TIL). The complete TIL code for this case is listed in Appendix B. h,

the following, we focus on three components to illustrate the general flavor of TIL programming.

The most basic component in the above design is loop4, hi TIL code it looks like tiffs :

Program1 TIL component loop4

COMPONENT

BEGIN

c I ©<pos

c 2 @<pos

c 3 @<pos

c 4 ©<pos

END

Ioop4(sIN surfl,surf2, cIN pos[1..4],cornl[1..4],corn2[1..4])

:1> -s surfl surf2 -L cornl:l corn2:l;

:2> -s surfl surf2 -L cornl:2 corn2:2 1;

:3> -s surfl surf2 -L cornl:3 corn2:3 2;

:4> -s surfl surf2 -L cornl:4 corn2:4 3 1;

Tiffs component imported two surfaces surfl anti surf2, and three corner arrays of length 4,

pos[1..4], cornl[1..4] and corn2[1..4], surfl, surf2, pos, cornl and corn2 are sinfilar to

what are termed as dmmny variables in Fortran subroutines. They do not introduce new surfaces

or corner to the topology, htstead, they ouly provide a mechanism to refi'r to existing corners

and surfaces defined outside of the componont. Corners and surfaces are constructed with corner

and surface definition statements in components, and by INPUTing components that have corner

and surface definition statements in them. Ial loop4, 4 corners axe defined. For every call to this

808

d
com1:4

com2:4 com2:3

3, J
coral :3

corn2:l com2:2

2
oc,m 1:1 corn1:2

(a)

c_m:8

'x.l:4

_rn:4

_rn:l

2..1 1:1

corn:5
(b)

corn:7

2:3_:/O

1:3,_

/
corn:3

corn:2

2:2%
corn:6

(c) (d)

Figure 2: Topology components. (a). The most basic component, loop4. (b). The component,

sec. It is constructed from two loop4's. (c). The component, center. It is constructed from two

secs. Also, 8 open links for connecting to a tube branch are shown. (d). The component, tube. It

is constructed by a sec with certain boundary conditions. Shown are 8 open links for connecting
to the centor.

component, 4 corners will be constructed and inserted into the topology. A corner is generally

defined by specifying a corner id, an initial position, a list of surfaces that the corner is supposed

to be on, and a list of existing corners to which the current corner should have links. The surface

list and link list are optional. In this case, the initial positions are provided by the import variable

pos. All 4 corners are attached to both surfl and surf2. In addition, the corners are linked to the

imported corners coral and corn2. They are also properly linked to each other to form a 4-corner

loop. The notation cornl : 3 simply means the 3 rd element of array cornl.

Two loop4's are used to construct the component soc.

Program2 TIL component soc

COMPONENT soc(sIN tube,tube_end,cIN pos[1..4],corn[1..8])

BEGIN

VECTOR p[l..4],shift;

INPUT 1 loop4(sIN (tube),(tube_end),

tIN (pos:l..4),(corn:l..4),(-4),

809

co;Fr (1..4)) ;

<shift> = 0.05,0.25,(<pos:l>+<pos:2>+<pos:3>+<pos:4>);

<p:l> = 0.8,<pos:l>+0.2,<pos:3>-<shift>;

<p:2> = 0.8,<pos:2>+0.2,<pos:4>-<shift>;

<p:3> = 0.8,<pos:3>+0.2,<pos:l>-<shift>;

<p:4> = 0.8,<pos:4>+0.2*<pos:2>-<shift>;

INPUT 2 loop4(slg (tube_end),(-1),

cIN (p:1..4),(corn:5..8),(l:1..4),

covr (1..4));

END

Here, vector operations are used to position the second loop4 relative to the first. The key word

c0UT exports some or all corners defined in the inputing component. Other components are similarly

constructed.

To complete the topology design, we need to have a head component to assemble the various

components together. This component must be the first one in the file. For our case, this component

is named Branching_Tubes:

Program 3 TIL component Branching_Tubes

COMPONENT Branching_Tubes()

BEGIN

VECTOR cut_x,cut_X,cut_y,cut_Y,cut_z,cut_Z;

s 1 -implic ''6jxXyYzZ.surf''

s 1 -implic ''6jxXyYZ.surf''

s 1 -implic ''6jxlyY.surf" ;

s 1 -implic "6jXYZ.surf" ;

; # 6 tubes

; # 5 tubes

4 tubes

3 tubes

<cut_x> = {-5, 0, 0}; <cut_X> = { 5, 0, 0};

<cut_y> = { 0,-5, 0}; <cut_Y> = { 0, 5, 0};

<cut_z> = { 0, 0,-5}; <cut_Z> = { 0, 0, 5};

INPUT 1 center(siN (1), cOUT (3:1..48));

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

END

2 tube_x(slN (1),clN (cut_x),(1:1

3 tube_X(slN (1),clN (cut_X),(1:1

4 tube_y(slN (1),tIN (cut_y),(1:1

5 tube_Y(slN (i),clU (cut_Y),(1:1

6 tube_z(slN (1),tIN (cut_z),(1:1

7 tube_Z(slN (1),clN (cut_Z),(1:1

48));

48));

48));

48));

48));

48));

Here a # symbol introduces colmnents ending at the end of the hne. A TIL statement starting

with the key word s defines a surface. Here, one surface is defined. It is an imphcit type and the

surface specification is in the file, 6jxXyYzZ.surf which contains the surface in Eq. 9..12 with a/1 six

810

(a) (b)

Figure 3: A grid for the inside of a 6-tube intersection. The thicker lines are block boundaries. (a).

arL outside view. (b). a cut away view.

tube branches present. The file, 6jxXyYzZ.surf is in the C programming language macro definition

style and is listed below.

Program4 Surface File 6jxlfyYzZ. surf

#define FUNCU (xafx*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=_*z, zl= za*tanh(z*4), \

2.0 + xa + ya + za - xa*ya - ya*za - za*xa)

For a non-build-in implicit surface, up to 9 pre-named macros must be defined. However, for a

fixed surface such as the one we have here, only FUNCU is needed, x, y and z axe the coordinate

variables, and xl, yl, zl, xa, ya and za are intermediate variables, xl, yl and zl are not really

used in the final formula. They will be used in a 5-tube surface. They are included here for the

reason of easy comparison.

In Program 3, following the surface definition, a center component and 6 tube branches

components are inputed. Six vectors are used to allow different choices of tube lengths. A high

quality grid can be generated by running GridPro/az3000 on this topology. Fig 3 shows some

aspects of the generated grid. It consists of 31 elementary blocks. Grid densities, clustering and

other aspects of grids can be readily adjusted by setting proper parazneters.

Now, suppose we want to generate a grid for the same surface, but without the tube branch

on the -z axis. The head component will be modified to look like this:

Program 5 Modified TIL component Branching_Tubes

811

COMPONENTBranching_Tubes()
BEGIN
VECTORcut_x,cut_X,cut_y,cut_Y,cut_z, cut_Z;

s 1 -implic ''6jxXyYzZ.surf'' ; # 6 tubes

s 1 -implic ''CjxXyYZ.surf'' ; # 5 tubes

s 1 -implic ''6jxXyY.surf'' ; # 4 tubes

s 1 -implic ''6jXYZ.surf'' ; # 3 tubes

<cut_x> = {-5, O, 0}; <cut_X> = { 5, O, 0};

<cut_y> = { 0,-5, 0}; <cut_Y> = { O, 5, 0};

<cut_z> = { O, 0,-5}; <cut_Z> = { O, O, 5};

INPUT 1 center(siN (1), cOUT (3:1..48));

INPUT 2 tube_x(sIN

INPUT 3 tube_X(sIN

INPUT 4 tube_y(sIN

INPUT 5 tube_Y(sIN

INPUT 6 ¢ube_z(sIN

INPUT 7 tube_Z(sIN

END

(1),tiN (cut_x)

(1),tiN (cut_X)

(1),tiN (cut_y)

(1),tiN (cut_Y)

(1),cIN (cut_z)

(1),cIN (cut_Z)

(1:1

(1:1

(1:1

(1:1

(1:1

(1:1

.48));

.48));
.48));
.48));
.48));

.48));

We used a different surface specification file "6jxXyYZ.surf", which has only 5 tube branches on

+x, +y and +z axes respectively. To accomplish this in "6jxXyYZ.surf', the FUNCU macro is

defined as:

Program6 Surface File 6jxXyYZ.surf

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=z*z, zl= za*tanh(z*4), \

2.0 + xa ÷ ya + zl - xa*ya - ya*za - za*xa)

The second thing we did in Program 5 is to comment out INPUT 6, which builds the sub-topology

for a tube branch on the -z axis. Running GridPro/az3000 on this topology yields the grid

shown in Fig 4. Similarly, we can define a surface that has 4 tube branches or 3 tube branches,

and appropriately m_dify the component Branching_Tubes for the corresponding topologies. The

grids are shown in Fig. 5.

CONCLUSION

We have now witnessed an application of implicit surfaces in the full cycle of geometry modeling

and grid generation using GridPro/az3000. We have noted the tfigh quality of both the geometry

model and the generated grid therein. We have also noted the ease with which changes can be made

812

(a) (b)

Figure4: A grid for the insideof a5-tubeintersection.Thethickerlinesareblockboundaries.(a).
anoutsideview. (b). a cut awayview.

to both aspects.Theexampleclassof multi filleted tubes has demonstrated a general philosophy

in a rather concrete setting which helps to establish a basic understanding.

In a forthcoming paper, we will develop a well-defined and easy-to-follow procedure for implicit

surface modeling which allows the user to efficiently assemble simple implicit surfaces (e.g cylinders)

into a complex whole (e.g intersecting cylinders). With these results, we have provided a powerful

means to address many analysis applications, and moreover, have opened a path in the direction

of rapid prototyping in grid generation.

813

(a) (b)

(c) (d)

Figure 5: Grid for the inside of a 4-tube and 3 tube intersections. The thicker lines are block

boundaries. (a). an outside view for the 4-tube case. (b). a cut away view for the 4-tube case. (c).

an outside view for the 3-tube case. (d). a cut away view for the 3-tube case.

814

APPENDIX A

To enlarge the scope of the geometry modeling for tube intersections, the function is generalized

to allow the cross section of the tubes to be superellipses of different degrees that can be switched

on and off individually. This generalization is given by,

U(r) = A + BX 2 + CY 2 + DZ 2 - (X2Y 2 + X 2Z2 + y2Z2)

where A, B, C, D, X, Y and Z axe functions of r.

x = Is-_-I "(') Y = I--L---vI"(') z = I_1 "(')() ' G(,') ' S_(r) "

n(r) = 1{
r 2

[n+. 1 + taRh(4z) 1 - tanh(4x)2 + n_ • 2] " x2

1 + tanh(4y) 1 - tanh(4y)], y2+ [q 2 + %- 2

1 + tanh(4z) 1 - tanh(4z)], z2 } .+ [n_+" 2 + nl- 2

Sx(r) = 1{ z2 +
r 2

+

[a+y " 1 + tanh(4y) 1 . y22 + a-_y. - tanh(4Y)]2

[a+. 1 + tanh(4z) 1 - tanh(4z)] .2 + a-_ • 2 z2} "

1 1 + taILh(4x) + avx" 1 - tanh(4x)] " x2 + y2S_(r) = _{ [av+. 2 2

1 + tanh(4z) _ 1 - tanh(4z)], z2 } .
+ [av+" 2 + a_z " 2

Sz(r) = r-_1 { [a+. 1 + tanh(4x)2 + az-z ' 1 - tanh(4x)].2 x2

+ [a+y " 1 + tanh(4Y)2 + a_-v" 1 - tanh(4y)].2 y2 + z 2} .

A = constant(say, l.2)

+ tanh(4x)) s_- tan_h(4x))B = -l+sx .(1+ + -(1-

+ • (1 + tanh(4y)) + s_- • (1 - tanh(4y))C = -l+s v

O = -1 + s +. (1 + tanh(4z)) + s_- • (1 - tanh(4z))

These functions axe controlled by a set of parameters. They are,

s + =Oor l for tube along +xaxis. s_ =Oor 1 for tube along

s + =Oor 1 for tube along +yaxis. s_- =Oor 1 for tube along

s + =Oor 1for tube along +: axis. s z --Oor 1 for tube along

--Taxis.

- y axis.

-- Z a2cis.

815

n_-

n + -

n_-

n + -

n z -

power of super ellipse

power of super ellipse

power of super ellipse

power of super ellipse

power of super ellipse

power of super ellipse

a+y - length of x-senu

a_-_ - length of x-senu

a+z - length of y-seres

ay-x - length of y-selm

a+_ - length of z-senn

az_ - length of z-sexm

for tube along +x axis.

for tube along -x axis.

for tube along +y axis.

for tube along -y axis.

for tube along +z axis.

tor tube along -z axis.

axis for tube on +y axis. a+z - length of x-senu

axis for tube on -y axis. a_z - length of x-senu

axis for tube on +x axis. a+z - length of y-senu

axis for tube on -x axis. au_ - length of y-senu

axis for tube on +x axis. a+u - length of z-semi

axis for tube on -x axis. az-u - length of z-serm

axis for tube on +z axis.

axis for tube on -z axis.

axis for tube on +z axis.

axis for tube on -z axis.

axis for tube on +y axis.

axis for tube on -y axis.

APPENDIX B

Files used to generate the grids with GridPro/az3000.

Program7

SET GRIDDEN 6

COMPONENT Branching_Tubes()

BEGIN

VECTOR shift_x,shift_X,shift_y,shift_Y,shift_z,shift_Z;

s 1 -implic "6jxXyYzZ.surf" ; # 6 tubes

s 1 -implic "6jxXyYZ.surf" ; # 5 tubes

s 1 -implic "6jxXyY.surf" ; # 4 tubes

s 1 -implic "6jXYZ.surf" ; # 3 tubes

<shift_x> = {-5, O, O}

<shift_y> = { 0,-5, O}

<shift_z> = { O, 0,-5}

; <shift_X> = { 5, O, 0};

; <shift_Y> = { O, 5, 0};

; <shift_Z> = { O, O, 5};

INPUT 1 center(siN (1), c0UT (3:1..48));

INPUT 2 tube_x(sIN (I)

INPUT 3 tube_X(sIN (I)

INPUT 4 tube_y(sIN (I)

INPUT 5 tube_Y(sIN (I)

INPUT 6 tube_z(sIN (I)

INPUT 7 tube_Z(sIN (I)

END

,cIN (shift_x)

,cIN (shift X)

,cIN (shift_y)

,cIN (shift_Y)

,cIN (shift_z)

,cIN (shift_Z)

(1:1

(1:1

(1:1

(1:1

(1:1

(1:1

.48));

.48));

.48));

.48));

.48));

.48));

Topology File 6joint. fra

816

lines below are hidden from novice users

COMPONENT tube_x(sIN tube,tiN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:l..8)); END

COMPONENT tube_I(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:9..16)); END

COMPONENT tube_y(sIN tube,cIN shift,corn[l..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:17..24)); END

COMPONENT tube_Y(sIN tube,tiN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:25..32)); END

COMPONENT tube_z(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:33..40)); END

COMPONENT tube_Z(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:41..48)); END

COMPONENT center(siN tube)

BEGIN

VECTOR pos[1..4],x,y,z;

<x> = _1.5,0,0}; <y> = _0,1.5,0}; <z> = {0,0,1.5};

<pos:l> = <x> + <y> + <z>; <pos:2> = -<x> + <y> + <z>;

<pos:3> = -<x> - <y> + <z>; <pos:4> = <x> - <y> + <z>;

INPUT 1 see(siN (tube),(-l),

cIN (pos:l..4),(-8), cOUT (1:1..4 2:1..4));

<pos:l> = <x> + <y> - <z>; <pos:2> = -<x> ÷ <y> - <z>;

<pos:3> = -<x> - <y> - <z>; <pos:4> = <x> - <y> - <z>;

INPUT 2 see(siN (tube),(-1),

cIN (pos:1..4),(l:l..8), cOUT (1:1..4 2:1..4));

INPUT 3 shuffle(cIN (1:2 2:2 2:3 1:3 1:6 2:6 2:7 1:7

1:1 2:1 2:4 1:4 1:5 2:5 2:8 1:8

1:4 1:3 2:3 2:4 1:8 1:7 2:7 2:8

1:1 1:2 2:2 2:1 1:5 1:6 2:6 2:5

2:1..8 1:1..8),

cOUT (corn:l..48),

tube_xO(corn:l..8), tube_xl(corn:9..16),

tube_yO(corn:17..24),tube_y1(corn:25..32),

tube_zO(corn:33..40),tube_zl(corn:41..48));

g 1:1 1:5 3;
LABEL SHELL = e(1:1 1:5);

END

COMPONENT shuffle(cIN corn[1..48]) BEGIN END

COMPONENT tube (sin tube.tiN shift, corn[1..8])

817

BEGIN

VECTOR pos [1..4] ,norm;

<norm> = [-<shift>];

s 1 -plane @(<norm>, <shift>); # tube end

<pos:l> = 0.7*(<corn:l> + <shift>); <pos:2> = 0.7*(<corn:2> + <shift>);

<pos:3> = 0.7*(<:orn:_> + <shift>); <pos:4> = 0.7*(<corn:4> + <shift>);

INPUT 1 sec(sIN (tube),(1),

cIN (pos:l..4),(corn:l..8), cOUT (1:1..4));

x f 1:1 1:3 corn:l corn:3;

END

COMPONENT sec(sIN tube,tube_end,cIN pos[l..4],corn[1..8])

BEGIN

VECTOR p[1..4],shift;

INPUT 1 loop4(sIN (tube),(tube_end),

tIN (pos:l..4),(corn:1..4),(-4),

cOUT (1..4));

<shift> = O.05*0.25*(<pos:l>+<pos:2>+<pos:3>+<pos:4>);

<p:l> = 0.8*<pos:l>÷O.2*<pos:3>-<shift>;

<p:2> = 0.8*<pos:2>+O.2*<pos:4>-<shift>;

<p:3> = 0.8*<pos:3>+O.2*<pos:l>-<shift>;

<p:4> = 0.8*<pos:4>+O.2*<pos:2>-<shift>;

INPUT 2 loop4(bIN (t_be_end),(-1),

cIN (p:l..4),(corn:5..8),(1:1..4),

cOUT (1..4));

END

COMPONENT loop4(sIN surfl,surf2,cIN pos[l..4],cornl[l..4],corn2[l..4])

BEGIN

c 1 @<pos:l> -s surf1 surf2 -L corn1:1 corn2:l;

c 2 @<pos:2> -s surf1 surf2 -L cornl:2 corn2:2 1;

c 3 ¢<pos:3> -s surfl surf2 -L corn1:3 corn2:3 2;

c 4 @<pos:4> -s surf1 surf2 -L cornl:4 corn2:4 3 I;

END

Program8

step I: -S I00 -_

write -a -D 3 -f grid.imp

Program9

#define FUNCU (xa=x*x, xl= xa*tanh(x*4)

ya=y*y, yl= ya*tanh(y*4)

Schedule File 6joint.sch

Surface File 6jxlyYzZ.surf

818

z_=_*z, 71= za*tanh(z*4) \

2.0 ÷ xa + ya ÷ za -xa*ya- ya*za -za*xa)

Program 10

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=z*z, zl= za*tanh(z*4), \

2.0 + xa + ya + zl -xa*ya- ya*za -za*xa)

Program 11

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

zafz*z, zl= za*tanh(z*4),\

2.0 + xa + ya - za -xa*ya- ya*za -za*xa)

Program 12

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

yafy*y, yl= ya*tanh(y*4), \

zafz*z, zl= za*tanh(z*4), \

2.0 + xl + yl + zl -xa*ya- ya*za -za*xa)

Surface File 6jxlyYZ.surf

Surface File 6j xlyY. surf

Surface File 6jlYZ.surf

References

[1] GridProTM/az3000 is a software product of the Program Development Corp., 300 Hamilton

Ave. Slfite 409, White Plains, NY 10601.

[2] Bajaj C. L.; and Hun I.: Algebraic Surface Design with Herndte hlterpolation. ACM Trans.

on Graphics., Vol. 11. No. 1, Jan. 1992, pp. 61.

[3] Eiseman P .R.; and Cheng Z.; and Hauser J.: Apphcations of Mlfltiblock Grid Generations

with Automatic Zoldng. Proceedings of the 4 t_ International Conference heht at Swansea,

Wales 1994, pp. 123.

[4] Program Development Corporation: GridProTM/az3000 User's G1Li(le mid Reference Man-

ual. 1993-1995.

[5] Gray A.: Modern Differential Geometry of Cltrves ml(l Sltrfaces. published by CRC Press,Inc.

1993, pp. 226.

819

